CIRCE Centro de Investigación de Recursos y Consumos Energéticos

Huesca 2021

Electric vehicles: General approach

1 CURRENT ENERGY SITUATION

Globally the message of energy transition is clear. There is a need of reduction of the carbon emissions and replacement of fossil fuels by renewable sources of energy

EV General approach

1 CURRENT ENERGY SITUATION

It is also important to know the sector that uses the energy

Global growth forecast for vehicle use continues to grow

EV General approach

2 EFFICIENCY IN THE TRANSPORT SECTOR

Internal combustión vehicle, ICE

 Maximum obtainable efficiency from source to wheels is around 16%, meaning that more of 80% of the energy content of their fuel is wasted

Electric vehicle, EV

 Minimum of 60% of their input energy into turning the wheels directly

3 SHORT HISTORY OF THE ELECTRIC VEHICLE

More than 100 years ago the dispute between different technology vehicles

- most important innovations:
- 1828 First small scale electric cars
- 1880 First electrical installations with distributed generation.
- 1881 First commercially- successful electric tram line.
- 1878 First Commercial Pb Acid Batteries
- 1890 First practical electric vehicles

EV General approach

3 SHORT HISTORY OF THE ELECTRIC VEHICLE

EV - Good option:

- Simplicity
- Reliability
- smooth running
- no gear shifting or crank
- they were not noisy
- they were fast
- the range was reasonable
- the maintenance was minimal
- its cost was bearable

ICE, prevailed in time

- First the immense availability of oil discovered and its reduction in cost
- And second, gasoline cars were in that moment able to travel farther and faster than equivalent electric ones.

4 ELECTRIC VEHICLE USAGE HABITS

CURRENT EV MARKET

Global EV distribution, 2010 - 2019

EV Market

Different types of EVs

EV Market

Private EVs

EV Market

Туре	Battery capacity	Range	Power EV (cv/kW)
Hyunday KONA	64 kWh	484 km	204/150
Nissan Leaf e+	62 kWh	385 km	217/160
RENAULT Twingo	22 kWh	270 km	81/60
OPEL Corsa	16 kWh	337 km	150/111
PEUGEOT ION	16 kWh	150	66/49

Hyunday KONA

Nissan Leaf e+

10

RENAULT Twingo

Opel Corsa - e

Peugeot ION

Commercial and industrial EVs

Туре	Battery	Range	Power	E٧
	capacity		(cv/kW)	
IVECO Daily 65C Electric Van	84.5 kWh	130 km	30.0/40.5	
Goupil B3–C Caja Basculante	15.36 kWh	100 km	5.4/7.3	
KANGOO ZE	15.3 kWh	170 km	44/59	

IVECO DAILY Electric van

GOUPIL G3-C

EV Market

Electric motorbikes

Туре	Battery capacity	Range	Power EV (cv/kW)
NIU M series	1.5 kWh	65 km	2.05/1.2
Silence S01	2.4 kWh	80 km	5.00/6.75
Zero Motorcycles S	14.4 kWh	200 km	22.00/29.92

NIU M series

Silence S01

Zero Motorcycles

EV Market

EV CHARGING

Integration of charging systems with the electrical grid

Night-time slow charge

Day-time charge

Integration of charging systems with **C** circe the electrical grid

Demand balance strategies of EV charging

One charge

Continuous charging

Demand from electric vehicles fast charge stations could be shifted to low demand periods by storing that electricity at night

Integration of charging systems with the electrical grid

Practical example

Electricity demand without EVs

This network has the following characteristics:

- 1 Transformer with a power of 1000 kVA
- 500 households
- 600 vehicles

Electric vehicle charging with load batteries

Overall system with renewable energy generation and a small storage system

C circe

Renewable energy generation

Global stock of electric Light Duty Vehicles (LDV) chargers

Source: Global EV Outlook 2020

Harmonized charging standard is the key for the massive deployment of electric mobility

- > Level: The power output range of the charger.
- Type: it refers to the connector and socket used by the charger.
- Mode: referring to the communication protocols between the charger and the vehicle.

IEC 61851 - International standard for EV conductive charging systems

EV Charging

circe

Creating together

IEC 61851 - International standard for EV conductive charging systems

Modes for charging electric vehicles

	Mode 1	Mode 2	Mode 3	Mode 4	
Grid connection	16 A plug (Type A)	Standardized outlet (Type B)	EV connected directly to the grid by means of a Charging Post (Type B)	EV connected indirectly to the grid by means of a Charging Post (Type C)	
Device for regulating the charging	EV on board	EV on board	EV on board	EV off board (Charge post has regulation)	
Recharging system permanently connected to the grid		No	Yes	Yes	
Communication	Not required	Pilot control wire compulsory	Communication between vehicle and post compulsory	Communication between vehicle and post compulsory	
Phases	1 3	1 3	1 3	1 3	
Max power (kW)	3.7 11	7.4 22	7.4 33	40 210	

Operation and parts of the EV | Zaragoza

Miguel Zarzuela / Laura Gimenez / Maria Gabriela Cañete

CIRCE Foundation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 847038

Electric vehicles: Operation and parts

Content

- 1. Automotive Batteries
- 2. Electric Vehicle Engine
- 3. Charging and operation modes

Steeep: Support & training for an Escellent Energy Efficiency Performance

1 Batteries

¿What is a Battery?

One or more electrochemical cells capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions.

Steeep: Support & training for an Escellent Energy Efficiency Performance

Steeep: Support & training for an Escellent Energy Efficiency Performance

1 Batteries

¿What is a Battery?

One or more electrochemical cells capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions.

Automotive Battery

ENERGY EFFICIENCY

Energy source of an Electric Vehicle (EV) to move the wheels

1 Batteries Chemistry

Steeep: Support & training for an Escellent Energy Efficiency Performance

1 Batteries

Automotive Battery

Consist of an arrangement of series and parallels of individual cells

```
12 x
```

= Battery module (12s)

Steeep: Support & training for an Escellent Energy Efficiency Performance

1 Batteries

Automotive Battery

Consist of an arrangement of series and parallel of individual cells

```
12 x = Battery module (12s)
```


- = Audi e-tron battery (108s4p cells)
- = Audi e-tron battery (9s4p modules)

Steeep: Support & training for an Escellent Energy Efficiency Performance

Creating together

1 Batteries

Automotive Battery Example

Consist of an arrangement of series and parallel of individual cells

```
12 x
```

= Battery module (12s)

= Audi e-tron battery (108s4p cells)= Audi e-tron battery (9s4p modules)

V = 108 cells in series = 3,66 x 108 = **396 V** Ah = 60 Ah/cell x 4 parallels = **240 Ah** Wh = 240 Ah x 396 V = 95 040 Wh = **95 kWh**

Steeep: Support & training for an Escellent Energy Efficiency Performance

1 Batteries Systems

BMS: Battery Management System

- Monitors cell voltage and temperatures
- Control intensity, power, and energy
- Protect cells from discharger or overvoltage
- Balance cells to avoid voltage differences

Battery Thermal Management System

- > Monitors temperatures
- Maintain performance and longevity

Steeep: Support & training for an Escellent Energy Efficiency Performance

Since the mid-19th century, different technology vehicles appeared, and electric and internal combustion engines coexisted. The electric engine was a good option for its:

- simplicity,
- reliability,
- smooth running,
- no gear shifting or crank,
- they were not noisy,
- they were fast,
- the range was reasonable,
- the maintenance was minimal,
- and its cost was bearable

Although, due to the immense availability of oil and its reduction in cost, the oil era prevailed. And now, internal combustion engines power most cars around the world

Steeep: Support & training for an Escellent Energy Efficiency Performance

Figure: View of EV drivetrain. Engine placement between two wheels

Various types of EV can be found: DC series, Brushless DC, Permanent magnet synchronous, Three phase AC induction and Switched Reluctance motors.

For high power applications like performance two-wheelers, cars, buses, trucks the ideal motor choice would be **Permanent magnet synchronous or Three phase AC induction motors**

Steeep: Support & training for an Escellent Energy Efficiency Performance

In both cases two major parts of the motor can be distinguish, the **stator**, where the stationary windings are; and the **rotor**, with the magnets that rotate and move the axis, converting the electric energy in mechanical.

Figure: Electric engine - Stator & Rotor

Steeep: Support & training for an Escellent Energy Efficiency Performance

Steeep: Support & training for an Escellent Energy Efficiency Performance

The stator is made up of stacked steel laminations with axially cut slots for winding.

Windings consist of a number of similar coils placed in sequential slots in the stator surface and connected in series. Each coil contains a number of insulated turns of conductor

Steeep: Support & training for an Escellent Energy Efficiency Performance

When a 3-phase induction motor is connected to utility type 3-phase power, torque is produced at the outset; the motor has the ability to start under load. No inverter is needed.

In contrast, a brushless DC motor produces no starting torque when directly connected to fixed frequency utility power. They really need the aid of an inverter whose "phase" is maintained in step with the angular position of the rotor.

Steeep: Support & training for an Escellent Energy Efficiency Performance

IEC 61851 - International standard for EV conductive charging systems

ELECTRIC VEHICLE CHARGER

circe

Creating together

IEC 61851 - International standard for EV conductive charging systems

Modes for charging electric vehicles

	Mode	e 1	Mode 2		Mode 3			Mode 4	
Grid connection	16 А ј (Туре	б A plug Standardi Гуре А) (Тур		zed outlet be B)	EV connected directly to the grid by means of a Charging Post (Type B)		o EV co grid	EV connected indirectly to the grid by means of a Charging Post (Type C)	
Device for regulating the charging	EV on b	ooard	EV on board		EV on board		EV of	EV off board (Charge post has regulation)	
Recharging system permanently connected to the grid	ly		No		Yes			Yes	
Communication	No requi	t red	Pilot control wire compulsory		Communication between vehicle and post compulsory		n Co vehi	Communication between vehicle and post compulsory	
Phases	1	3	1	3	1	3	1	3	
Max power (kW)	3.7	11	7.4	22	7.4	33	240	210	

MODE 1

The Charger is in the EV

- The EV controls the charger process
- Threephasic or monophasic connection

MODE 2

The Charger is in the EV

Includes a pilot control connection

The pilot manage the process parameters

Mode 3 Fast AC Charging

MODE 3

➤The Charger is in the EV

The recharger socket is permanently connected to the grid

Like mode 2, includes a control pilot

Mode 3 Fast AC Charging

Control pilot circuit

Mode 3 Fast AC Charging

MODE 3

The Charging process comprise 9 steps

Mode 4 Fast DC Charging

MODE 4

 The Charger is outside the EV
The EV has a DC input socket
CHAdeMO and CCS2 (Combined Charger System)

Mode 4 Fast DC Charging CHAdeMO

➤Use CAN bus

- The CHAdeMO protocol stablishes a dialogue between the EV and the external charger
 - The EV request the necessary energy to recharge the battery

CHAdeMO Connector

Mode 4 Fast DC Charging CHAdeMO

Mode 4 Fast DC Charging CHAdeMO

In 2018 CHAdeMO release the 2.0 protocol which covers until 400 kW and 1 kV

The CHAdeMO protocol support the V2G charging

Mode 4 Combined Charging System (CCS2)

The recharging of the vehicle both in AC (slow/medium charging) and DC (quick charging) using two types of charger connectors and only one charging inlet in the vehicle

CCS is a combined system that chargers EV with both AC current and DC current via the vehicle inlet meaning that only one interface or connector is required in the vehicle

CCS connector for Europe and North America (Source articles.sae.org)

ELECTRIC VEHICLE CHARGER

circe

Muchas gracias por su atención

Tel.: [+34] 976 976 859 · circe@fcirce.es

www.fcirce.es